
Print Now

Journaling at object creation on DB2 for iSeries, TIPS0604

Abstract

There is often a time gap between the time a file is created and the time some person or product turns on journaling
protection for this newly created object. In some environments, that time gap represents a risk: What if an application
adds data to this new object before journal protection is enabled?

For that reason, especially in environments that demand high availability, it is desirable to find a mechanism by which you
can assure that no such time gap exists. What if you could assure that newly created objects, such as database files, had
journaling enabled at creation?

Is that possible?

Yes!

This has always been the default behavior for SQL tables. Now you can have similar behavior for native DB2® files as
well as for data areas and data queues.

Contents

Written by Peg Levering, Software Engineer
IBM® Systems & Technology Group
Development iSeries™ Journaling

Automatically starting journaling as objects are added to a library

Many users wish to have all of the objects in their production library journaled to assure proper recovery. Yet they find
that this list of objects is not static. They might use software packages that constantly create new objects. These users
often struggle trying to detect the arrival of the new objects so that journaling can be started for the objects before any
new content (for example, database rows) flows into them. With Version 5 Release 4 Modification 0 (V5R4M0) of the
i5/OS™ operating system, this task is now easier to accomplish.

Release V5R4M0 of i5/OS has some new functions to ensure that objects added to a library are journaled at creation.
That is, they start out life in a journaled state and even their creation is recorded in the journal. To accomplish this, a
special data area named QDFTJRN must be created in the library of interest. The data in this data area informs the
operating system what journal to start journaling to, what objects to consider, and what operations to consider. Thereafter,
when objects that are eligible to be journaled (object types of *FILE, *DTAARA, and *DTAQ) are added to the library, the
operating system looks for this data area in the library and uses the data within it to decide whether journaling should be
started for the object.

The layout and contents of the QDFTJRN data area

The information in the data area must be entered in a special format. The data area should be created as a character
data area of at least 40 bytes. The following table illustrates the layout of the data area.

Offset Field Description
1 Library Name The library name for the journal.

Left aligned.
Entered in UPPER CASE.

11 Journal Name The name of the journal to which the objects are to be journaled.
This name also must be entered in UPPER CASE.

21 Object type/operation pairs
Length of field Field name Description

The last pair of 10-character fields (object type and operation) can be repeated to allow different options for different
object types. When more than one object type/operation combination is specified in the data area, the first combination
that covers an object and operation will be used.

Caution: If lower case is used for the library name, the library will not be found. Likewise, using lower case for the journal
name will prevent the journal from being found and journaling will not be automatically started.

How about an example?

The following example shows how to set up the QDFTJRN data area to have journaling started to journal JRNL in library
@JRNLIB for objects added to library PRODLIB.

Perhaps your application creates temporary work data areas in library QTEMP and moves them into the production
library. You do not want to bother journaling these temporary work data areas. So your desire is to have the following
customized behavior: Files automatically start journaling during any operation, data areas only automatically start
journaling when they are created in the library, and data queues never automatically start journaling. To achieve this
behavior, the QDFTJRN data area would be created as follows:

CRTDTAARA DTAARA(PRODLIB/QDFTJRN) TYPE(*CHAR) LEN(100)
CHGDTAARA DTAARA(PRODLIB/QDFTJRN (1 10)) VALUE(@JRNLIB)
CHGDTAARA DTAARA(PRODLIB/QDFTJRN (11 10)) VALUE(JRNL)
CHGDTAARA DTAARA(PRODLIB/QDFTJRN (21 10)) VALUE(*FILE)
CHGDTAARA DTAARA(PRODLIB/QDFTJRN (31 10)) VALUE(*ALLOPR)
CHGDTAARA DTAARA(PRODLIB/QDFTJRN (41 10)) VALUE(*DTAARA)
CHGDTAARA DTAARA(PRODLIB/QDFTJRN (51 10)) VALUE(*CREATE)

Assuring your users have sufficient authority to succeed

For journaling to successfully start in this automated fashion, all of the normal authority rules still apply. Because
applications creating new objects are not only creating the object but also, under the covers, are performing a start journal
operation, any user adding objects to the library must have sufficient authority to both the journal specified in the
QDFTJRN data area and the journal’s library. You might recall that start journal operations require both *OBJOPR and
*OBJMGT authority to the journal and *EXECUTE authority to the journal’s library. Do not worry that giving all your users

10 Object Type The object types to consider journaling. This field must be one of
the following special values:

*FILE – just physical files
*DTAARA – just data areas
*DTAQ – just data queues
*ALL – all eligible object types

10 Operation The operations that should cause journaling to automatically
start. If no value is specified then *CREATE is assumed. This
field must be one of the following special values:

*ALLOPR – this option includes *CREATE, *MOVE and
*RESTORE (*RSTOVRJRN is not included in *ALLOPR)
*CREATE – Create operations (including those on behalf
of CRTDUPOBJ or CPYF) will cause automatic journaling.
*MOVE – Moving an object into the library will cause
automatic journaling.
*RESTORE – Restoring an object to the library will cause
automatic journaling.
*RSTOVRJRN - when restoring an object, override the
usual start journal behavior (PTFs SI24505, SI24794,
SI24812, and SI24864 are required for this support)

this much authority to the journal means that they can see information they should not. The secret to proper authority
management is that you are really dealing with two objects: the journal to which the newly created object is journaled, and
the underlying journal receiver into which the resulting object changes are recorded. Your users need not be given
authority to both objects. You can limit how much information your users can access by excluding their access to the
journal receivers.

Anything that can prevent automatic start journaling from working?

If things go wrong and journaling was not started as expected, you will get message CPI6954 (Object could not be
journaled) in the job log of the job creating the object. Any of a variety of mistakes might have been made. Obviously
journaling cannot be started if the designated journal does not exist. i5/OS could easily draw this conclusion if you
entered what appears to be the wrong journal name and hence the designated journal cannot be found (perhaps you
entered the name in lower case in the QDFTJRN data area). Another situation that will prevent journaling from
automatically starting is if the designated journal is not operational. Perhaps the sequence numbers have been exhausted
or the currently attached journal receiver has reached its maximum size. Any of the conditions that prevent journaling
from starting will not, however, prevent the object from being added to the library. The act of creating the object and the
act of starting journaling for this new object are independent. The first can succeed even if the second fails.

How about object moves rather than creates?

Maybe you have an application that you enhance occasionally. To test your enhancements you create your new objects
in a test library and then move them to your production library when you are confident with your changes. What will
happen when you move the objects to your production library? If you were journaling the object when it was in the test
library, then it will remain journaled to that same journal even if the production library contains a QDFTJRN data area that
indicates that journaling should be started to a different journal when moving objects of this type into the library. Only if
the object is not journaled at the time of the move operation would the QDFTJRN data area information be used to start
journaling.

How about restore time behavior using *RESTORE?

What if you test your new enhancements on a test system and restore them to your production library? Will journaling be
started in this situation? If the object being restored was journaled on your test system, then the first attempt is always
made to start journaling to the journal the object was journaled to when it was saved prior to considering any QDFTJRN
data area that might exist in the library into which the object is being restored. Only if that journal or its library cannot be
found will an attempt be made to journal the object to a journal that was specified in the QDFTJRN data area. If the save
time journal is found, but is not healthy, then journaling is not started during the restore operation at all and message
CPF3848 (Security or data format changes occurred) is sent as a diagnostic message to the job log. An error such as this
will not fail the restore operation.

If the object being restored was not journaled on your test system, then any QDFTJRN data area found in the restore
library would influence whether journaling is started during the restore operation. If the attempt to automatically start
journaling on behalf of the QDFTJRN data area fails, the restore operation will still be successful.

What about restore time behavior using *RSTOVRJRN?

Perhaps you would like to save your production library, and restore it to another library on your production system to allow
for testing new applications. Maybe you would like to be able to do this without having the objects in your test library
journaled to your production journal but you do want them journaled. If this scenario sounds like something you would like
to do then you might wish to check into the *RSTOVRJRN function.

The *RSTOVRJRN function was delivered for V5R4M0 via four PTFs. All four PTFs are required to provide the function.
When using *RSTOVRJRN the journal that was used at the time the object was saved is not used during restore. Like
*RESTORE, if an existing object is being restored over, then the journaling attributes of the object on the system are not
changed. But when not restoring over an object, with *RSTOVRJRN, the state of the object at save time does not affect
the journaling behavior during the restore operation. During the restore, only the QDFTJRN data area will influence
whether or not journaling is started during the restore operation.

The required PTFs for this function are: SI24505, SI24794, SI24812, and SI24864.

Are there any concerns with using a new journal during restore?

The situation to consider when using the QDFTJRN data area to change journaling during the restore operation is the use
of the Apply Journaled Changes (APYJRNCHG) command. Be aware that in order to use APYJRNCHG to apply
changes, the object must be journaled to the same journal it was journaled to at save time. If there is a desire to use
APYJRNCHG, and the restore operation started journaling the object to a different journal because of data in the
QDFTJRN data area, then the object should be saved again after the restore. This newly saved object will be the object
that can be used to apply any future journaled changes. Specifying *RSTOVRJRN in the QDFTJRN data area is one way
that a new journal could get used during a restore.

What journal attributes will be used?

An ordinary start journal command request provides a set of choices for customizing the resulting journal behavior.
Specifically, this is done via the images (IMAGES) and/or Journal entries to be omitted (OMTJRNE) parameters on the
Start Journal Physical File (STRJRNPF) or Start Journal Object (STRJRNOBJ) commands. It is natural to ask which of
these behaviors will ensue if you employ the QDFTJRN data area technique to start journaling. When journaling is
automatically started for a file, the journal images value will be *BOTH and the entries to be omitted value will be
*OPNCLO. When journaling is automatically started for a data area, the journal images value will be *AFTER. Neither of
these choices is available when journaling data queues. If different journaling options are desired for files or data areas,
the Change Journaled Object (CHGJRNOBJ) command can be used to change the journaling options. The following
example changes the journaling attributes of a file to capture only the after images of the records.

CHGJRNOBJ OBJ((PRODLIB/CUSTMAST *FILE)) ATR(*IMAGES) IMAGES(*AFTER)

Can you journal SQL tables to a journal other than QSQJRN?

When creating tables via SQL, the operating system has always looked for journal QSQJRN in the library into which the
table is being created and started journaling to that journal. If you want to have a different journal employed as the default
for new SQL tables, a QDFTJRN data area can be created in the library (or Schema) to direct the operating system to
start journaling the table to a journal other than QSQJRN, perhaps even a journal in another library.

Why journal objects at creation?

By using the QDFTJRN data area to journal objects at creation there will never be a time when your nightly save does not
find all of the objects in your library journaled. This allows for recovery of your objects to another point in time via the
Apply Journaled Changes (APYJRNCHG) command.

Also, having the objects start journaling at creation ensures that the very first change made to the object is recorded in
the journal. This might be important to you if you have auditors who want to see every change, or if you are replicating
your object to another system via the changes recorded in the journal.

Special Notices

This material has not been submitted to any formal IBM test and is published AS IS. It has not been the subject of rigorous review. IBM assumes no responsibility
for its accuracy or completeness. The use of this information or the implementation of any of these techniques is a customer responsibility and depends upon the
customer's ability to evaluate and integrate them into the customers operational environment.

